HW08 - Bonding Theories & IMF

⚠ This is a preview of the draft version of the quiz

Started: Aug 8 at 4:52pm

Quiz Instructions

Homework 08 - Bonding Theories & IMF

Question 1	1 pts
A sigma bond	
is always polar.	
may exist alone or in conjunction with a pi bond.	
always exists in conjunction with a pi bond.	
stems from sp hybridization of orbitals.	
is composed of non-bonding orbitals.	

Question 2	1 pts
In a new compound, it is found that the central carbon atom is ${\rm sp}^2$ hybridized. This implies that	
carbon has four sigma bonds.	
carbon has four lone pairs of electrons.	
carbon has four regions of high electron density.	
carbon has a tetrahedral electronic geometry.	
carbon is also involved in a pi bond.	
carbon is also involved in a pi bond.	

Question 3	1 pts
n the molecule, $\mathrm{C_2H_4}$, what are the atomic orbitals that participate in forming the sigma bond betwe	en the C and H atoms?
○ H: sp², C: sp²	
○ H: 1s, C: sp ²	
O H: 1s, C: sp	
O H: 1s, C: 2p	
O H: 2p, C: sp ³	
Question 4	1 pts
What is the expected bond order for the diatomic species B ₂ ?	
O 0	
O 2	
O 4	
O 3	
O 1	
Question 5	1 pts
Consider the molecule ${\sf B_2}$ (explored above in question #4). What is the magnetism and number of un	npaired electrons in B₂?
paramagnetic, 2	

diamagnetic, 0	
paramagnetic, 1	
Question 6	1 pt
According to molecular orbital theory, which of the following is NOT predicted to exist?	
O He ²⁺	
O He ²⁻	
All are predicted to exist.	
O He	
O He ₂	
Question 7	1 pt
N_2 has a bond order of 3 and O_2 has a bond order of 2. Based on this information, cho the following sentence: N_2 is (less, more) stable than O_2 , and has a (larger, shorter) bon	ose the response that best completes
N_2 has a bond order of 3 and O_2 has a bond order of 2. Based on this information, cho he following sentence: N_2 is (less, more) stable than O_2 , and has a (larger, shorter) bon	ose the response that best completes
N_2 has a bond order of 3 and O_2 has a bond order of 2. Based on this information, cho he following sentence: N_2 is (less, more) stable than O_2 , and has a (larger, shorter) bon energy.	ose the response that best completes
N_2 has a bond order of 3 and O_2 has a bond order of 2. Based on this information, choose the following sentence: N_2 is (less, more) stable than O_2 , and has a (larger, shorter) bond energy. Selection less, longer, lower	ose the response that best completes
o more, shorter, lower	ose the response that best completes
N_2 has a bond order of 3 and O_2 has a bond order of 2. Based on this information, choosine following sentence: N_2 is (less, more) stable than O_2 , and has a (larger, shorter) bond energy. Oless, longer, lower Oless, shorter, lower	

O H ₂ S				
O NO ₃ -				
O No molec	ule given here posses	ses a delocalized b	oond.	
O NCI ₃				
O H ₂ O				

Question 9	1 pts
Which of the following statements concerning molecular orbital theory is true?	
1. Bonding orbitals are lower in energy than their corresponding anti-bonding orbitals.	
2. If a molecule has an odd number of electrons, then it is paramagenetic.	
3. The MO diagrams for O_2 , F_2 , Ne_2 are NOT filled using the Aufbau principle.	
O 1 only	
O 1 and 3	
O 2 only	
O 1, 2, and 3	
② 2 and 3	
O 1 and 2	

Question 10	1 pts
Which of the following statements concerning molecular orbital theory is/are true?	
Bonding orbitals are equal in energy to their corresponding anti-bonding orbitals.	
2. Adding electrons to anti-bonding orbitals destabilizes molecules.	
3. Unlike when we fill atomic orbitals, we DON'T use Hund's Rule to fill molecular orbitals.	
1, 2, and 3	

② 2 and 3	
O 1 and 3	
O 2 only	
O 1 only	
O 3 only	
Question 11	1 pts
Which of the following statements is true about a molecule with a bond order of one?	
The molecule has a single bond.	
The molecule is as stable as molecules with bond orders of two and three.	
The molecule has no electrons in antibonding orbitals.	
Two side-by-side p orbitals combine to form pi bond and pi antibond orbitals; therefore, the bond order is 1.	
Question 12	1 pts
	1 pts
Question 12 Which of the following must be observed when filling a molecular orbital energy diagram?	1 pts
	1 pts
Which of the following must be observed when filling a molecular orbital energy diagram?	1 pts
Which of the following must be observed when filling a molecular orbital energy diagram? Hund's Rule, Pauli Exclusion Principle, and Dalton's Law	1 pts
Which of the following must be observed when filling a molecular orbital energy diagram? Hund's Rule, Pauli Exclusion Principle, and Dalton's Law Aufbau Principle, Hund's Rule, and Pauli Exclusion Principle	1 pts
Which of the following must be observed when filling a molecular orbital energy diagram? Hund's Rule, Pauli Exclusion Principle, and Dalton's Law Aufbau Principle, Hund's Rule, and Pauli Exclusion Principle Aufbau Principle, Hund's Rule, and Graham's Law	1 pts
Which of the following must be observed when filling a molecular orbital energy diagram? Hund's Rule, Pauli Exclusion Principle, and Dalton's Law Aufbau Principle, Hund's Rule, and Pauli Exclusion Principle Aufbau Principle, Hund's Rule, and Graham's Law	1 pts

Will H_2^+ be more or less stable than H_2 and why?	
more stable; H ₂ ⁺ has one less electron in bonding orbitals	
more stable; H ₂ ⁺ has one less electron in antibonding orbitals	
less stable; H ₂ ⁺ has one less electron in antibonding orbitals	
less stable; H ₂ ⁺ has one less electron in bonding orbitals	
Question 14	1 pts
A chemist has synthesized two new dyes based on the molecular structure of plant-base line for the first dye is light in the visible region at 530 nm. The lowest energy absorption livisible region at 645 nm. Based on this evidence, which molecule has the higher HOMO-	ne for the second dye is light in the
The dye that absorbs at 530 nm.	
The gap is the same as both dyes absorb light in the visible region.	
The dye that absorbs at 645 nm.	
There is not enough information given to answer the question.	
Question 15	1 pts
An antibonding orbital is formed when	
a p _x -orbital overlaps a p _z -orbital.	
a free electron is present in the molecule.	
the overlap of the corresponding atomic orbitals leads to destructive interference	Э.

Question 16	1 pts
Which of the following are important contributions that MO theory makes to chemistry?	
1. The ability to use MO theory with a computer to calculate the minimum energy geometry of a molecule.	
2. The ability to predict the energy at which a molecule will absorb light.	
3. The ability to predict whether or not a molecule should be paramagnetic or diamagnetic.	
O 1 and 2	
O 3 only	
O 1 only	
② 2 and 3	
1, 2, and 3	
O 1 and 3	
O 2 only	

Question 17	1 pts
Forces between particles (atoms, molecules, or ions) of a substance are called	
intramolecular forces	
none of these	
intermolecular forces.	
armed forces	

Question 18	1 pts
What would be the most significant type of intermolecular forces in a liquid sample of fluoroform (CHF ₃)?	

O dipole-dipole	
ionic	
dispersion	
Covalent	
hydrogen bonding	
Question 19	1 pts
What is the predominant intermolecular force between IBr molecules in liquid IBr?	
O dipole forces	
ionic forces	
O dispersion forces	
ocvalent bonds	
hydrogen bonds	
Question 20	1 pts
Which of the following structures represents a possible hydrogen bond?	
○ F-H ····· F	
O Br-H ····· Br	
O C-H ····· O	
O CI-H ····· CI	
Question 21	1 pts

London forces, dipole-dipole	
hydrogen bonding	
O dipole-dipole	
London forces, dipole-dipole, and hydrogen bonding	
O London forces	
Question 22	1
The dominant forces between molecules are	
O electrostatic.	
electrodynamic.	
nagnetic.	
O electromagnetic.	
gravitational.	
Question 23	
Question 25	1
Which of the following molecules are likely to form hydrogen bonds?	
1. CH ₃ CH ₂ OH	
2. CH ₃ COOH	
3. CH ₃ CHO	
4. CH ₃ OCH ₃	

1 and 2 only	
None of these form hydrogen bonds.	
O 1 only	
1, 2, 3, and 4	

Question 24	1 pts
Consider the two water molecules below.	
Which of the following statements is correct?	
The covalent bond A is stronger than the hydrogen bond B.	
The covalent bond B is stronger than the hydrogen bond A.	
The covalent bond A is weaker than the hydrogen bond B.	
The covalent bond B is weaker than the hydrogen bond A.	

Question 25	1 pts
Which of the following is not correctly paired with its dominant type of intermolecular forces?	
CaO, ionic forces	
C ₆ H ₆ (benzene), instantaneous dipoles	

SiH ₄ , instantaneous dipoles	
HBr, hydrogen bonding	
NH ₃ , hydrogen bonding	
Question 26	1 pts
Which of the following interactions is generally the strongest?	
ionic interactions	
O dispersion forces	
hydrogen bonding	
O dipole-dipole interactions	
Question 27	1 pts
Which of the following statements is NOT correct?	
Dispersion forces	
are temporary rather than permanent dipole-dipole interactions.	
decrease in strength with increasing molecular size.	
are also called London forces.	
are the only forces between nonpolar molecules.	
Question 28	1 pts
Question 28 Why is I_2 a solid while H_2 is a gas?	1 pts

Quiz: HW08 - Bonding Theories & IMF

I₂ has a larger dipole than H₂.

https://utexas.instructure.com/courses/1167163/quizzes/1097539...

I ₂ is less polarizable than H ₂ .	
$lacksquare$ $lacksquare$ I $_2$ is more polarizable than $lacksquare$	
Question 29	1 pts
ery weak and very short range attractive forces between temporary (induced) dipoles are called	
adhesive forces.	
O dispersion forces.	
gravitational forces.	
Cohesive forces.	